If it's not what You are looking for type in the equation solver your own equation and let us solve it.
21x^2=59x-36
We move all terms to the left:
21x^2-(59x-36)=0
We get rid of parentheses
21x^2-59x+36=0
a = 21; b = -59; c = +36;
Δ = b2-4ac
Δ = -592-4·21·36
Δ = 457
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-59)-\sqrt{457}}{2*21}=\frac{59-\sqrt{457}}{42} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-59)+\sqrt{457}}{2*21}=\frac{59+\sqrt{457}}{42} $
| y–4=9 | | 2*(3x/1)=5x+7 | | 6x-(5)=3x+7 | | 18=8m+6-4m | | 2l+2(l/3)=96 | | 7x+x=6+5x | | (3m+3)(m-5)=0 | | x÷-4-5=-8 | | (14x-13)+(16x+2)+(4x+13)=180 | | x²–7x=–12 | | 2x+7,5=5x | | 10+x=30x | | (11x-1)+(20x-3)=180 | | 2x10=30 | | 1x+2x=3x-6x | | (3x-5)+(7x-5)=180 | | (x+2)(2x-3)=22 | | 1,5(x+2)=3(x-6) | | 12+x=4(x-1,5) | | X/2=14/x-3 | | A+4=a+1 | | 5-3(x+2)=4-(2x-2) | | 3(5x+6)=3x-3 | | 2(y+6)=50 | | (x+1)2+(x-8)2=45 | | 35-5(2x+3)=200 | | 20y+15=10y+15 | | 6(x)=108 | | 2(3.14)(1.25)^2h=44.05 | | 3(x+4)-2(2-x)=4(2x-1)+7 | | 3x-1+2x+9=90 | | 3x(x-6)-42=6 |